GNSS/GPS-Empfänger ermöglichen uns heutzutage eine exakte Bestimmung unserer Position auf der Erdoberfläche. Im Privatgebrauch nutzt man überwiegend GPS-Empfänger als Navigationshilfe, zur Positionierung von Fotos und Videos, zur Ortung von Handys oder zur Schatzsuche, dem sogenannten Geocaching.

Viele von uns nutzen die kleinen Wegbegleiter.

Doch wie genau arbeiten Sie eigentlich?

Zur Überprüfung von Navigationsgeräten hat die Senatsverwaltung für Stadtentwicklung und Wohnen vier Kontrollpunkte eingerichtet. Diese wurden unter Verwendung des Satellitenpositionierungsdienstes der deutschen Landesvermessung SAPOS® zentimetergenau bestimmt.

Und so einfach geht's:

- 1. Suchen Sie den Referenzpunkt auf.
- Stellen Sie die Koordinatenausgabe Ihres GNSS/GPS-Empfängers auf eines der angegebenen Bezugssysteme ein.
- **3.** Setzen Sie Ihren Empfänger auf unseren Referenzpunkt auf.
- Bestimmen Sie die Standortkoordinaten mit Hilfe Ihres Gerätes.
- Vergleichen Sie Ihre Messwerte mit unseren Koordinaten des Referenzpunktes.

Kleine Hilfe für die Überprüfung der geographischen Koordinaten

Längendifferenz:	1'	=	1141,0 m	(ca.
	0,1'	=	114,0 m	
	0,01'	=	11,4 m	
	0,001'	=	1,1 m	
	0,0001	=	0,1 m	
Breitendifferenz:	1'	=	1854,0 m	(ca.
	0,1'	=	185,5 m	
	0,01'	=	18,5 m	
	0,001	=	1,9 m	
	0,0001	=	0,2 m	

Einfacher geht's mit UTM-Koordinaten, da es sich hierbei bereits um ein metrisches System handelt.

Begriffe / Glossar

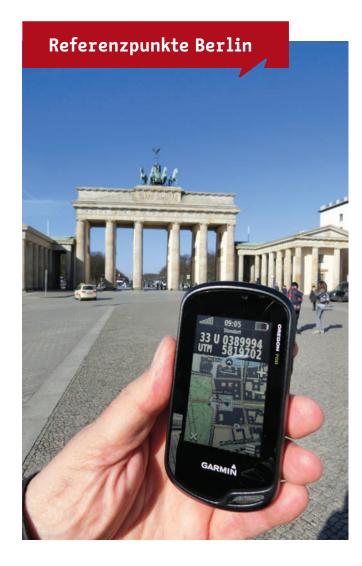
GNSS: Global Navigation Satellite System

Oberbegriff für alle Systeme zur Positionsbestimmung und Navigation mittels Satellitensignalen wie z.B. dem amerikanischen GPS, dem russischen GLONASS oder dem künftigen europäischen GALILEO und chinesischem BEIDOU.

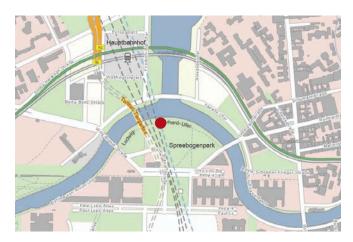
UTM: Universal Transverse Mercator

Projektion zur Abbildung von dreidimensionalen, kartesischen Koordinaten in die Ebene. Darstellung der Lagekoordinaten im metrischen System.

SAPOS®


Satellitenpositionierungsdienst der deutschen Landesvermessung.

Senatsverwaltung für Stadtentwicklung und Wohnen, Geoinformation Fehrbelliner Platz 1, 10707 Berlin www.stadtentwicklung.berlin.de/geoinformation


Senatsverwaltung für Stadtentwicklung und Wohnen

Kontrollpunkte für Navigationsgeräte in Berlin

Referenzpunkt Berlin-Mitte

Ludwig-Erhard-Ufer, Spreebogenpark, Nähe Hauptbahnhof

Koordinaten und Höhe:

Bezugssystem ETRS89/WGS84

Geographisch: 13°22,3013' L 52°31,3551' B

UTM: 33U 389525,8 E

5820410,0 N

Höhe

Elipsoidisch: 79,8 m

Normalhöhe (NHN): 40,5 m ü. NHN

Referenzpunkt Berlin-Marzahn-Hellersdorf

Kienberg, IGA Berlin 2017

Koordinaten und Höhe:

Bezugssystem ETRS89/WGS84

Geographisch: 13°34,8523' L 52°32,0910' B

UTM: 33U 403743,9 E 5821474,7 N

Höhe

Elipsoidisch: 142,1 m

Normalhöhe (NHN): 103,1 m ü. NHN

Referenzpunkt Berlin-Wilmersdorf

Preußenpark, Rondell Südseite

13°18,7607' L

5817176,0 N

Koordinaten und Höhe:

Bezugssystem ETRS89/WGS84 Geographisch:

52°29,5608′ B UTM: 33U 385444,7 E

Höhe

Elipsoidisch: 76,5 m

Normalhöhe (NHN): 37,1 m ü. NHN

Referenzpunkt Berlin-Adlershof

Ernst-Ruska-Ufer, Nähe Havestadtplatz

13°32,1411' L

Koordinaten und Höhe:

Bezugssystem ETRS89/WGS84 Geographisch:

UTM: 52°25,5451 B 33U 400433,2 E 5809401,7 N

Höhe

Elipsoidisch: 75,5 m

Normalhöhe (NHN): 36,2 m ü. NHN